PREPARATION AND REACTIONS OF 1,7-DHIYDRO-3,5-DIMETHYL-4-NITROPHENYL-1,7-DIPHENYLPYRANO[2,3-C:6,5-C]PYRAZOL-8-IUM PERCHLORATE

Aly H. Atta^a, Hussein H. Abbas^a, Mansour I. Younes^a, and Saoud A. Mctwally^b

a) Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, Egypt.

b) Chemistry Department, Faculty of Science, Assiut University, Assiut Egypt.

Abstract: 3-Methyl-1-phenyl-4-(4'-nitrobenzylidine)-2-pyrazolin-5-one \underline{I} reacts with 3-methyl-1-phenyl-2-pyrazolin-5-one \underline{II} in acetic anhydride/perchloric acid mixture to give the pyrylium salt \underline{III} . Reaction of \underline{III} with amines and active methylenes were studied.

In a previous paper(1) we have prepared pyrazol[5,4-b]pyrylium salts using 3-methyl-2-pyrazolin-5-one. In this paper and in continuation of our program to the synthesis of heterocyclic pyrylium salts we represent a new method to obtain 1,7-dihydro-3,5-dimethyl-4-nitrophenyl-1,7-diphenylpyrano[2,3-c:6,5-c]pyrazol-8-ium perchlorate III from 3-methyl-1-phenyl-4-(4'-nitrobenzylidine)-2-pyrazolin-5-one I and 3-methyl-1-phenyl-2-pyrazolin-5-one II in the presence of acetic anhydride/ perchloric acid mixture at 105 °C. Stirring of I and II in n-butanol gave 4-(4'-nitrobenzylidine)bis[2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one] IV. On the other hand when the above reaction was carried out at reflux condition and in the presence of pyridine as a basic catalyst we obtained 4,7-dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenyl-1H-pyrano[2,3-c:6,5-c]dipyrazole V. Treating of IV or V with perchloric acid/acetic anhydride mixture we obtained the pyrylium salt. III (Scheme 1, Table 1).

Scheme 1

Treatment of the pyrylium salt III with ammonia leads to 1,7-dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7diphenyl-dipyrazolo[3,4- \underline{b} :4',3'-e]pyridine VI (2-4), through opening of the pyrylium nuclese followed by removal of water molecule. Conversion to pyridine derivatives also occurred when III was treated with butylamine to give VII (5-7), based on elemental and spectral data.

Using diethylamine or morpholine as secondary amines with the pyrylium salt \underline{III} we obtained 7a-(diethylamino)-7,7a-dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenyl-1 \underline{H} -pyrano[2,3-c:6,5-c[']]dipyrazole \underline{VIII} and 7,7a-dihydro-3,5-dimethyl-7a-morpholino-4-(nitrophenyl)-1,7-diphenyl-1 \underline{H} -pyrano[2,3-c:6,5-c[']]dipyrazole \underline{IX} (7) respectively. Structures of \underline{VIII} and \underline{IX} were confirmed by spectral and elemental analyses (Scheme 2, Table 2).

Treating of the pyrylium salt <u>III</u> with hydrazine, no pyridinium salt <u>VII</u> or pyranodipyrazole derivatives <u>VIII</u>, <u>IX</u> were formed and instead bis-pyrazolone derivative <u>IV</u> is formed, identified by spectral, elemental, m.p. and m.m.p. with an authentic sample prepared from <u>I</u> and <u>II</u>.

Scheme 2

Active methylenes e.g. malononitrile, ethyl cyanoacetate, acetylacetone, ethyl acetoacetate and 5-pyrazolone $\underline{X}_{a=2}$ were react with the pyrylium salt \underline{III} in the same manner as secondary amines and gave pyrano-bis-pyrazole derivatives $\underline{XI}_{a=2}$ (cf. Sscheme 3).

Experimental

All melting points are uncorrected. IR spectra were recorded (KBr) with 408 Shimadzo spectrophotometer. ¹H-NMR spectra were obtained on a Varian EM-390- 90 MHz spectrometer using TMS as internal indicator and chemical shifts are expressed as δ ppm. Analytical data were obtained at microanalysis unit at Assiut University.

476

1,7-Dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenylpyrano[2,3-c:6,5-c] dipyrazol-8-ium perchlorate <u>III</u> Method A :

To a mixture of 3-methyl-1-phenyl-4-(4'-nitrobenzylidine)-2-pyrazolin-5-one I (1.54 g; 5 m mol) and 3methyl-1-phenyl-2-pyrazolin-5-one II (0.87 g; 5 m mol) in 5 ml of acetic anhydride and at 105 °C, perchloric acid (3 ml) was added dropwise, the mixture was stirred for 3 h. The precipitated product by dilution with ethyl acetate was collected and dried as white amorphous (Table 1).

Method B:

To 5 m mol of \underline{IV} or \underline{V} in 5 ml of acetic anhydride and at 105 °C, perchloric acid (3 ml) was added dropwise, the mixture was stirred for 3 h. The precipitate formed by addition of ethyl acetate was collected and dried to give white amorphous.

4-(4-nitrobenzylidene)bis[2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one IV

A mixture of 3-methyl-1-phenyl-4(4'-nitrobenzylidine)-2-pyrazolin-5-one, I(1.54 g; 5 m mol) and 3-methyl-1-phenyl-2-pyrazolin-5-one, II(0.87 g; 5 m mol) in 20 ml of n-butanol was stirred for 10 h. The separated solid was collected and crystallised from ethanol to give colourless crystals.

4,7-Dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenyl-1H-pyrano[2,3-c:6, 5-c]dipyrazole V

A mixture of 3-methyl-1-phenyl-4(4'-nitrobenzylidine)-2-pyrazolin-5-one I (1.54 g; 5 m mol) in 20 ml of nbutanol; 3-methyl-1-phenyl-2-pyrazolin-5-one (0.87 g; 5 m mol) and in the presence of few drops of pyridine as a catalyst was refluxed for 15 h. After cooling the precipitated product was collected and crystallised from ethanol as yellow crystals (Table 1)

1,7-Dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenyldipyrazolo[3,4-b:4,3-e]pyridine VI

The pyrylium salt \underline{III} (0.56 g; 1 m mol) was refluxed with 20 ml of ethanol saturated with ammonia for 4 h. The precipitated product formed after cooling was collected and crystallised from xylene to give yellow crystals (Table 2).

8-Butyl-1,7-dihydro-3,5-dimethyl-4-(nitrophenyl)-1,7-diphenyldipyrazolo-[3, 4-b:4,3-e]pyridinium perchlorate VII

To a mixture of the pyrylium perchlorate \underline{III} (0.56 g; 1 m mol) and butylamine (4 m mol), sodium bicarbonate (0.67 gm in 5 ml H₂O) was added. The mixture was stirred for 15 h., then acidified to pH = 1 with perchloric acid. The formed precipitate was collected and crystallised from ethanol as brown amorphous, m.p. 166 - 170 °C; yield 0.37 g (61%).

Reaction of 1,7-dihydro-3,5-dimethyl-4-nitrophenyl-1,7-diphenylpyrano[2,3-c:6,5-c]dipyrazol-8-ium perchlorate with secondary amines

An equimolar amount of the pyrylium salt \underline{III} and secondary amine (1m mol) in absolute ethanol (20 ml) was refluxed for 10 - 12 h. After cooling the precipitated product was collected and crystallised from benzene and ethanol for <u>VIII</u> and <u>IX</u> respectively.

Reaction of 1,7-dihydro-3,5-dimethyl-4-nitrophenyl-1,7-diphenylpyrano[2,3-c:6,5-c]dipyrazol-8-ium perchlorate with active methylenes

General method :

Active methylenes $\underline{X}_{a=e}$ (1 m mol) was added to a solution of 0.56 g (1 m mol) of \underline{III} in 20 ml of absolute ethanol and in the presence of triethylamine as a basic catalyst (0.13 ml, 1 m mol). The reaction mixture was refluxed for 8 h. After cooling the precipitated product was collected and crystallised from proper solvent (Table 3).

References

(1) S.A.M. Metwally, M.I. Younes, A.M. Nour, Heterocycles 24, 1631 (1986).

(2) A. Baeyer, Ber. Dtsch Chem. ges. 43, 2337 (1910).

- (3) A. Baeyer, J. Piccard, Justus Liebig's Ann. Chem. <u>384</u>, 208 (1911).
- (4)A. Baeyer, J. Piccard, Justus Liebig's Ann. Chem 407, 322 (1914).
- (5) A.R. Katritzky; K. Horvath, B. Plau, Synthesis, 437 (1979).
- (6) A.R. Katritzky, Tetrahedron 36, 679 (1980).
- (7) G. Doddi, G. Illuminati, M. Mecozzi, P. Nunziante, J. Org. Chem. 48, 5268 (1983).

	z	12.46	12.40		14.54	14.40	1		15.11	15.33	
Calc. / Found	Н	3.59	3.63		4.81	5.19			4.57	4.32	
	c	57.71	57.40		67.35	67.36			69.97	70.22	
¹ H-NMR ^{a)} δ (ppm)		2.6 (s, 6H, 2CH ₃); 7.2-7.8 (m, 14H, Ar-H).			2.3(s, 6H, 2CH ₃), 4.95(s, 1H, CH),	7.2-7.9 (m, 14H, Àr-H)			2 6 (s, 6H, 2CH ₃), 5 4 (s, 1H of pyran)	7.2.7.85 (ni, 14H, Ar-H)	
I.R.	γ (cni ⁻¹)	2900 (CH aliphatic),	3150 (CH atomatic),	1550, 1350 (NO ₂)	2960 (CH, alip.),	3150 (CH, aram.),	1730 (CO),	1550, 1350 (NO ₂)	30:50 (CH arom.),	2900 (CH aliph.)	1580, 1340 (NO ₂)
Molecular	formula	C21H20N5O,CI	(561.9)		C2, H23N, O	(481.5)			C21H21N5O3	(463.5)	
m p. °c	so vent of cryst.	305	•		205 - 210	ethanol			229	ethánol	
Yield	%	82			69				70		
Product		III			IV				٧		

V-III
compounds
of the
data c
Physical
••
-
Table

a) ¹H-NMR for III and IV were carried out in DMSO, for V in TFA.

Table 2 : Physical data of compounds <u>VI-IX</u>.

	N	18.25	18.21		13.62	13.50		15.72	15.43		15.32	15.14	
Calc. / Found	Н	4.38	5.08		4.74	4.52		5.66	6 29		5.14	5.12	
	ပ	70.42	70.05		60.34	60.21		69 65	69.24		67.87	67.78	
¹ H-NMR ^{a)} δ (ppm)	(DMSO)	•			•						1.35(5, 6H, 2CH3), 2.25(s, 4H, 7CH2),	2.55 (s, 2H, C ¹ ₂), 3.5 (s, 2H, CH ₂),	7.0-8.1 (m, 14H, Ar-H).
LR.	γ (cm ¹)	3050 (CH arom),	2950 (CH aliph)	1550, 1350 (NO ₂)	3050 (CH arom.),	2900 (CH aiiph.),	1530, 1340 (NO ₂)	3080 (CH arom.),	2950 (CH aliph.),	1560, 1360 (NO ₂)	3050 (CH arom.),	2900 (CH aliph.),	1550, 1350 (NO ₂)
Molecular	formula	C2,H10N5O2	(460.5)		C31H29N626CI	(617.1)		C ₃₁ H ₂₀ N ₅ O ₃	(534.6)		C ₃₁ H ₂₈ N ₅ O ₄	(548.6)	
m.p. ^c c	so vent of cryst.	224-25	xylene		166-170	benzene		127-130	benzene		160-165	etnanol	
Yield	%	61			61			57			65		
Product		Ν			IIV			VIII			IX		

H. Atta, H. Abbas, M. Younes, S. Metwally

Heterocyclic Communications

pun	N	18.59	18.51		14.63	14.81			CV C1	14.21	12.61	12.61	12.61	12.61 12.61 11.84 11.69	12.61 12.61 11.84 11.69	11.44 11.84 11.69 11.69 15.42	12.61 11.69 11.69 11.69 15.42 15.51
Calc. / Fou	Н	4.01	4.21		4.56	4.52			101	4 80	4 00	4 00	4 73 4 73 4 94	4 80 4.94 4.80	4 50 4 73 4.94 4.80	4 5 5 4 4 7 3 4 7 4 7	4 8 4 9 4 8 4 7 3
	C	68.30	68.21		66.89	66.72			68 44		68.24	68.24	68.24 66.99	68.24 66.99 66.94	66.99 66.94	68.24 66.99 66.94 69.91	68.24 66.99 66.94 69.91 69.82
¹ H-NMR ^{a)} δ (ppm)		2 0 (s, 6H, 2CH.), 4.65 (s, 1H, CH),	7.0-8.0 (m, 14H Ar-H)		1.1-1.35(t, 3H, CH ₃), 2.35(s, 6H, 2CH ₃),	3.5-3.85(q, 2H, CH ₂), 5.0 (s, 1H, CH).	7.35-8.25 (m, 14H, Ar H)		2.3 (s, 6H, 2CH,), 2.6 (s, 6H, OCH,),		5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H)	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H)	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H) 1.2-1.4(t, 3H, CH ₁), 2.25(s, 6H, 2CH ₁),	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H) 1.2-1 4(t, 3H, CH ₁), 2.25(s, 6H, 2CH ₁), 3.0-3.25(t ₁ , 2H, CH ₂), 4.9(s, 1H, CH).	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H) 1.2-1 4(t, 3H, CH ₃), 2.25(s, 6H, 2CH ₃), 3.0-3.25(1, 2H, CH ₂), 4.9(s, 1H, CH). 7.15-8.15 (m, 14El, Ar-H).	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H) 1.2-1 4(t, 3H, CH ₃), 2.25(s, 6H, 2CH ₃), 3.0-3 25(₄ , 2H, CH ₂), 4.9(s, 1H, CH). 7.15-8.15 (m, 14EI, Ar-H). 2.2 (s, 6H, 2CH ₃), 2.4 (s, 3H, CH ₃),	5.1(s, 1H, CH), 7.2-8.15 (ni, 14H, Ar-H) 1.2-1.4(t, 3H, CH ₃), 2.25(s, 6H, 2CH ₃), 3.0-3.25(3, 2H, CH ₃), 4.9(s, 1H, CH), 7.15-8.15 (m, 14F, Ar-H). 2.2 (s, 6H, 2CH ₃), 2.4 (s, 3H, CH ₃), 4.9(s, 1H, CH of pyrazole), 7.0-8.0 (m,
I.R	γ (cm ⁻¹)	3050 (CH arom.),	2900 (CH alinh.),	1580, 1340 (NO ₂)	3100 (CH arom.),	2930 (CH aliph.),	1580, 1350 (NO ₂)	1550, 1350 (NO ₂)	3070 (CH aron.)		2950 (CH aliph.),	2950 (CH aliph), 1600, 1380 (NO:)	2950 (CH aliph), 1600, 1380 (NO;) 3050 (CH aroin.),	2950 (CH aliph.), 1600, 1380 (NO;) 3050 (CH aroin.), 2900(CH a iph.), 1720(CO)	2950 (CH aliph), 1600, 1380 (NO;) 3050 (CH aroin.), 2900(CH a iph.), 1720(CO) 1560, 1350 (NO ₂)	2950 (CH aliph), 1600, 1380 (NO;) 3050 (CH aroin.), 2900(CH a iph.), 1720(CO) 1560, 1350 (NO ₂) 3050 (CH aroin.),	2950 (CH aliph), 1600, 1380 (NO;) 3050 (CH aroin), 2900(CH a iph.), 1720(CO) 1560, 1350 (NO ₂) 3050 (CH aroin), 2900 (CH aliph),
Molecular	formula	C ₁₀ H ₂₁ N ₇ O ₃	(527.5)		C ₃₂ H ₂ ,N ₅ O ₅	(574.6)			C32H27N5O5		561.6)	(561.6)	(561.6) C ₃₃ H ₂₉ N,O ₆	(561.6) C ₃₃ H ₂₉ N,O ₆ (591.6)	(561.6) C ₃₃ H ₂₉ N,O ₆ (591.6)	(561.6) C ₃₃ H ₂₉ N;O ₆ (591.6) C ₃₇ H ₂₅ N;O ₄	(561.6) C ₃₃ H ₂₉ N;O ₆ (591.6) C ₃₇ H ₂₅ N;O ₄ (635.7)
m p č	solvent of cry st.	217-220	ethanol		215	ethano			220		ethanol	ethanol	ethanol 147-150	ethanol 147-150 to uene	ethanol 147-150 to uene	ethanol 147-150 to uene 198-200	ethanol 147-150 to uene 198-200 ethanol
Yield	%	17			70				99				59	59	59	59 64	59 64
Product		XIa			XIb				XIc				ріх	ріх	ріх	XId Xle	XId Xle

Table 3 : Physical data of the compounds $\underline{X \text{ a-e}}$

a) ¹H-NMR for XIa-d were carried out in CDCl₃, for XIe in DMSO.

Rece ved July 29, 1996